Generalized BSDEs and nonlinear Neumann boundary value problems

نویسندگان

  • Etienne Pardoux
  • Shuguang Zhang
چکیده

We study a new class of backward stochastic di€erential equations, which involves the integral with respect to a continuous increasing process. This allows us to give a probabilistic formula for solutions of semilinear partial di€erential equations with Neumann boundary condition, where the boundary condition itself is nonlinear. We consider both parabolic and elliptic equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic BSDEs and related PDEs with Neumann boundary conditions

We study a new class of ergodic backward stochastic differential equations (EBSDEs for short) which is linked with semi-linear Neumann type boundary value problems related to ergodic phenomenas. The particularity of these problems is that the ergodic constant appears in Neumann boundary conditions. We study the existence and uniqueness of solutions to EBSDEs and the link with partial differenti...

متن کامل

A Higher Order Monotone Iterative Scheme for Nonlinear Neumann Boundary Value Problems

The generalized quasilinearization technique has been employed to obtain a sequence of approximate solutions converging monotonically and rapidly to a solution of the nonlinear Neumann boundary value problem.

متن کامل

INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.

متن کامل

Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian

In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))'  +  a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0  leq t leq 1, alpha_i u...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990